

Location Division Multiple Access for Near-Field Communications

Zidong Wu Tsinghua University

May 29th, 2023

Z. Wu and L. Dai, "Location division multiple access for near-field communications," in *Proc. IEEE Int. Conf. Commun. (IEEE ICC'22)*, Rome, Italy, May, 2023.

Extremely Large-Scale Antenna Array

- 6G is expected to achieve 10 times higher spectral efficiency compared with 5G
- The higher spectral efficiency can be achieved exploiting spatial multiplexing, which requires significantly increased number of antennas
 - ➤ 4G: 2-8 antennas → 5G: 64-256 antennas
 - ➢ 6G: 1024+ antennas with extremely large-scale antenna array (ELAA)

[1] W. Jiang, B. Han, M. A. Habibi and H. D. Schotten, "The Road Towards 6G: A Comprehensive Survey," IEEE Open J. Commun. Soc., vol. 2, pp. 334-366, Feb. 2021.

Near-Field for ELAA

• Electromagnetic propagation can be divided into far-field and radiative near-field region

Table I. Near-field region [m] (data from [1])

	0.1 m	0.5 m	1 m	3 m
3 GHz	0.21	5	20	180
28 GHz	1.9	47	187	/
142 GHz	9.0	237	/	/

ELAA with 2304 antennas@28GHz, Rayleigh distance is 25 m, Tsinghua [2]

Evolution from massive MIMO to extremely large-scale array results in the near-field propagation

[1] A. Pizzo, L. Sanguinetti, and T. L. Marzetta, "Fourier plane-wave series expansion for holographic MIMO communications," *IEEE Trans. Wireless Commun.*, vol. 21, no. 9, pp. 6890-6905, Sep. 2022.
 [2] M. Cui, Z. Wu, Y. Chen, S. Xu, F. Yang, and L. Dai, "Demo: Low-power communications based on RIS and AI for 6G," in *Proc. IEEE Int. Conf. Commun. (IEEE ICC'22)*, Seoul, SouthKorea, May 2022. (IEEE ICC 2022 Outstanding Demo Award).

Challenge of SDMA

- Spatial division multiple access (SDMA) is employed by massive MIMO to multiplex data streams to different users for improving spectral efficiency
- In massive MIMO systems, far-field beamsteering vectors only focus on specific angles, which enables the multiple access for users at different angles

Users at the same angle cannot be simultaneously served by massive MIMO with SDMA

Mitigated Interference with Beamfocusing

- Far-field beamsteering vectors focus on specific spatial angle
- Near-field beamfocusing is capable to focus on specific location^[1], which could be leveraged to mitigate inter-user interferences

Far-field beamsteering

Near-field beamfocusing

Near-field beamfocusing has the potential to serve users at the same spatial angle

[1] H. Zhang, N. Shlezinger, F. Guidi, D. Dardari, M. F. Imani and Y. C. Eldar, "Beam focusing for near-field multiuser MIMO communications," *IEEE Trans. Wireless Commun.*, vol. 21, no. 9, pp. 7476-7490, Sept. 2022.

Multiple Access in Near-Field: SDMA or LDMA?

- Far-field SDMA: Users at different angles can be served by orthogonal far-field beams
- Near-field location division multiple access (LDMA): Users at different locations can be simultaneously served due to property of near-field beam focusing

Compared with far-field SDMA, near-field LDMA provides a new possibility for capacity improvement

[1] Z. Wu and L. Dai, "Location division multiple access for near-field communications," in Proc. IEEE Int. Conf. Commun. (IEEE ICC'22), Rome, Italy, May, 2023.

Far-Field vs. Near-Field

- Far-field: the EM waves impinging on the antenna array can be approximately modeled as planar waves, where the phase of the EM wave is a linear function of the antenna index
- Near-field: the EM waves have to be accurately modeled as spherical waves, where the phase of the EM wave is a non-linear function of the antenna index

Near-Field LoS Channel Model

- Base station (BS) antenna number M = 2N + 1, antenna spacing $d = \lambda/2$, array aperture D = (M 1)d, the location of the *n*-th antenna is (0, nd), where $n \in [-N, \dots, 0, \dots, N]$
- The channel between the *n*-th antenna and the user located at $(r\cos\theta, r\sin\theta)$ is

• Generally, the complex gains are very similar when r > 1.2D

$$g_{-N} \approx \cdots \approx g_0 \approx \cdots \approx g_N \approx g$$

• Therefore, the LoS channel is

$$h = [h_{-N}, \dots, h_0, \dots, h_N]^T = g \left[e^{-j\frac{2\pi}{\lambda} (r^{(-N)} - r)}, \dots, e^{-j\frac{2\pi}{\lambda} (r^{(N)} - r)} \right]^T$$

$$= g a(r, \theta)$$
Near-field array response vector

[1] E. Björnson, Ö. T. Demir, and L. Sanguinetti, "A primer on near-field beamforming for arrays and reconfigurable intelligent surfaces," in *Proc. 2021 55th Asilomar Conference on Signals, Systems, and Computers*, pp. 105-112, Oct. 2021.

Beamfocusing of Near-Field Beams

- True Array Gain $f(r, \bar{r}, \theta)$ - Approximated Array Gain $G(\beta)$

Lemma 1: The normalized array gain achieved by $w = a^*(\bar{r}, \theta)$ at any user location (r, θ) is obtained through Fresnel approximation as

$$f(r,\bar{r},\theta) = |a^{H}(\bar{r},\theta)a(r,\theta)|\frac{1}{M}\left|\sum_{n=-N}^{N}e^{jk(\bar{r}^{(n)}-r^{(n)})}\right| \approx |G(\beta)| = \left|\frac{C(\beta)+jS(\beta)}{\beta}\right|$$

where $\beta = \sqrt{\frac{M^{2}d^{2}(1-\theta^{2})}{2\lambda}\left|\frac{1}{r}-\frac{1}{\bar{r}}\right|}, C(\beta) = \int_{0}^{\beta}\cos\left(\frac{\pi}{2}t^{2}\right)dt$ and $S(\beta) = \int_{0}^{\beta}\sin\left(\frac{\pi}{2}t^{2}\right)dt$ are Fresnel functions.

W

3dB range:
$$r \in \left[\frac{\bar{r}D^2(1-\theta^2)}{D^2(1-\theta^2)+2\lambda\beta_{\Gamma}^2\bar{r}}, \frac{\bar{r}D^2(1-\theta^2)}{D^2(1-\theta^2)-2\lambda\beta_{\Gamma}^2\bar{r}}\right]$$

3dB depth-of-focus: $r_d = \frac{4\lambda\beta_{\Gamma}^2\bar{r}^2D^2(1-\theta^2)}{D^4(1-\theta^2)^2-4\lambda^2\beta_{\Gamma}^4\bar{r}^2}$
 $G(\beta_{\Gamma}) = 0.5$

[1] E. Björnson, Ö. T. Demir, and L. Sanguinetti, "A primer on near-field beamforming for arrays and reconfigurable intelligent surfaces," in *Proc. 2021* Bisth Asilonnar Conference on Signals, Systems, and Computers, pp. 105-112, Oct. 2021.

Asymptotic Orthogonality in Distance

Phase: $\phi_n^{\text{far}}(\theta) = -\frac{2\pi}{\lambda} n d\theta$ Correlation: $f^{\text{far}} = |\mathbf{a}^H(\theta_1)\mathbf{a}(\theta_2)| = \frac{1}{N} \left| \frac{\sin(\frac{1}{2}Nkd(\sin\theta_1 - \sin\theta_2))}{\sin(\frac{1}{2}kd(\sin\theta_1 - \sin\theta_2))} \right|$

As $N \to \infty$, interference from different angles $I^{\text{far}} \to 0$ $(\theta_1 \neq \theta_2)$

• Lemma 2: Near-field orthogonality in distance domain Phase: $\phi_n^{\text{near}}(\theta) = -\frac{2\pi}{\lambda} n d\theta + \frac{1-\theta^2}{\lambda r} \pi n^2 d^2$ Correlation: $f^{\text{near}} = |\mathbf{a}^H(\theta, r_1) \mathbf{a}(\theta, r_2)| \approx |G(\beta)| = \left|\frac{C(\beta) + jS(\beta)}{\beta}\right|$ where $\beta = \sqrt{\frac{N^2 d^2(1-\theta^2)}{2\lambda}} \left|\frac{1}{r} - \frac{1}{r}\right|$

As $N \to \infty$, interference from different distances $I^{\text{near}} \to 0$ $(\forall \theta, r_1 \neq r_2)$

General Form of Asymptotic Orthogonality () 新孝大著

• Corollary 2: Near-field beam focusing vectors on different angles or distances are asymptotically orthogonal with the increasing number of antennas

$$\lim_{N \to +\infty} |\mathbf{a}^{H}(r_{l}, \theta_{l}) \mathbf{a}(r_{m}, \theta_{m})| = 0, \quad \text{for } r_{l} \neq r_{m} \text{ or } \theta_{l} \neq \theta_{m}$$

Lemma 3: Orthogonality of UPA in the distance domain
Phase:
$$\phi_n^{\text{near}}(\theta, \phi) = -n_1 d\cos(\theta) - n_2 d\sin\theta \sin\phi + \frac{n_1^2 d^2}{2r} (1 - \cos\theta)$$

 $+ \frac{n_2^2 d^2}{2r} (1 - \sin^2 \theta \sin^2 \phi) - \frac{n_1 n_2 d^2 \cos \theta \sin \theta \sin \phi}{r}$
Correlation: $f^{\text{near}} = |\mathbf{a}^H(\theta, \phi, r_1) \mathbf{a}(\theta, \phi, r_2)|$
As N_1 or $N_2 \to \infty$, interference from different distances $f \to 0$ $(r_1 \neq r_2)$

Simulation Results for LDMA

- Scenario 1: Users are linearly distributed along the same direction
- Scenario 2: Users are uniformly distributed within a cell

BS Antennas	UE Antennas	Frequency	UE Numbers	Elevation/ Azimuth Angle Range	Distance Range
256	1	30 GHz	20	$[-\pi/2,\pi/2]$	[4m, 100m]

[1] Z. Wu and L. Dai, "Location division multiple access for near-field communications," in Proc. IEEE Int. Conf. Commun. (IEEE ICC'22), Rome, Italy, May, 2023.

